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1 Abstract

Intelligent systems are nature-inspired, mathematically sound, computationally intensive

problem solving tools and methodologies that have become extremely important for advancing

the current trends in information technology. Artificially intelligent systems currently utilize

computers to emulate various faculties of human intelligence and biological metaphors. They use

a combination of symbolic and sub-symbolic systems capable of evolving human coemlitive skills

and intelligence, not just systems capable of doing things humans do not do well. Intelligent

systems are ideally suited for tasks such as search and optimization, pattern reco_m_dtion and

matching, planning, unce_ainty management, control, and adaptation. In this paper, the

intelligent system technologies and their application potential are highlighted via several

examples.

2 Defining Intelligent Systems
Science has evolved with our efforts towards understanding and mimicking nature, through

inventions and discoveries, hypotheses and proofs, success and failures. The evolution of

computers marks the era of our success in building systems that can perform actions of a

repetitive kind, those which are difficult or time consuming if done by humans. This has helped

enhance our efforts towards studying and understanding the intelligence of biological systems

and applying this knowledge towards building artificially intelligent systems.

We attribute intelligence to vm-'ious faculties. Intelligence is often identified in terms of

competence, expertise, talent, schooling, IQ, and social interaction. From the perspective of

computation, the intelligence of a system is characterized by its flexibility, adaptability, memory,

learning, temporal dynamics, reasoning, and the ability to manage uncertain and imprecise

information. Capabilities such as information gathering, understanding, making inferences, and

applying it to understand and solve new problems efficiently are observed to be critical features

of such systems. Intelligence has been defined in several ways:

• the ability to learn or understand from experience

• ability to acquire and retain knowledge

• mental ability

• the ability to respond quickly and successfully to a new situation

• use of the faculty, of reason in solvin_ problems, directin_ conduct, etc. ,.,_,.,_=_F'"*;"_T"_,'-_.,

Although Artificial Intelligence (AI) is the corner stone on which Intelligent System (IS)

technolo_es are built, there are distinguishing differences between AI and IS. These differences

are highlighted next.



AI hasevolved with two distinct dimensions (Russell and Norvig, 1995), one is "humanistic Ar'

and the other is "rationalistic AI". Humanistic AI examines machines that think and act like-

humans, whereas rationalistic AI examines machines that can be built on the understanding of

intelligent human behavior. Some definitions of AI related to these ideas are presented below.

Humanistic AI

"The art of creating machines that perform functions that require intelligence when performed by

people" (Kurzweil, 1990)

"The study of how to make computers do things at which, at the moment, people are better"

(Rich and Knight, I991)

Rationalistic AI

"A field of study that seeks to explain and emulate intelligent behavior in terms of computational

processes" (Schalkoff, 1990)

"The branch of computer science that is concerned with the automation of intelligent behavior"

(Luger and Stubble field, 1993)

Intelligent systems as envisioned today are mostly modeled after rationalistic AI. They examine

intelligent behavior using the models of human systems that enable intel/igent behavior. In

addition, IS has distinguished itself from AI by including intelligent behavior as seen in nature as

a whole. This intelligent behavior includes biological genetics (distributed information),

evolution (survivability), chaos (structured randomness), and natural adaptation (sufficability).

Also, innovations in IS are driven by the need to solve complex problems with improving

efficiencies. This improvement could be over a period of computing time, real-time, or over a set

of problems encountered. The idea is not to converge to an optimal solution but to find solutions

that are better than their predecessors. The underlying assumption here is that the problem

domain is either too enormous with few good solutions or is non stationary.

So how can one define intelligent systems? This is indeed a difficult question and is subject to a

gear deal of debate. From the author's view point, an intelligent system is one that emulates

some aspects of intelligence exhibited by nature. These include:

1. Learning

2. Adaptability

3. Robustness across problem domains

4. Improving efficiency (over time and/or space)

5. Information compression (data to knowledge)

6. Extrapolated reasoning

The debate of what is an intelligent system will be around as long as the definition of intelligence

itself eludes us. From the practical view point, IS technologies have made it easier to achieve

some level of complexity in aerospace applications just as much computers have enabled certain

level of complexity

3 Role of Intelligent Systems in Aerospace Engineering
Intelligent System ('IS) applications have gained popularity among aerospace professionals in the

last decade due to the ease with which several of the IS tools can be implemented. In addition to
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this ease of implementation, IS has been shown to solve difficult problems more efficiently.

Another advantage that IS practitioners have seen is complex ideas can be implemented and

tested with rapid development cycles. Al! of these rely heavily on the ubiquitous nature of

computing machines with the power of 20th century supercomputers. The applications have

gained popularity among the technical and user communities for both intellectual curiosity and

for practical reasons. Some of the novel ideas using IS include spacecraft autonomy, aircraft

control, modeling, airfoil design, satellite operations, missile design, and vehicle health

management. In essence one can say that the IS technoloNes help achieve efficiency, robustness

in addition to providing human-like capabilities such as pattern recognition, learning, long-term

optimization, planning, and self-improvement.

The role of intelligent systems in aerospace engineering is two-fold: (1) function as intelligent

assistants to augment human expertise; and (2) act as a substitute for human expertise in

endeavors that save cost, time, and life. For example, intelligent systems assist humans in solving

difficult optimization problem by their shear ability to robustly search through myriad of choices.

In contrast, intelligent systems are used on autonomous rovers to both save cost and human lives.

In the next several sections, we present some areas of applications using intelligent systems and

highlight the benefits using examples related to aerospace engineering.

3.1 Intelligent Systems for Modeling

Modeling could be thought of as a representation of available information. Intelligent systems

provide two very important features for modeling: generalization and robustness. Generalization

implies that the model could be used not only to represent just the data gathered but the

knowledge the data represents. Robustness can be defined as the system's ability to perform

within certain bounds of its nominal (without uncertainty) performance in the presence of

bounded uncertainty. Several techniques such as neural networks, fuzzy logic, expert systems,

etc have been routinely used by aerospace engineers for modeling. Knowledge representation in

general contains syntax and semantics. Syntax is the _*".... '^-con_l_,,Ll,_,, of sentences and Semantics is

the interpretation of sentences. Examples of knowledge representation include

• Mathematical Equations (Ex: ARMA Models: Autoregressive moving average models

are created using the least-square technique to represent linear relationship between

inputs and outputs.)

• Rule-based systems. Reasoning is a process of arriving at a conclusion based on a

collection of premises. Expert system based reasoning is one of the popular rule-based

inferencing system that is in use today. This consists of three parts: a knowledge base (a

set of Pales and known facts); acquired data (derived facts and data); and an inference

enNne (reasoning logic).

• Fuzzy Models: Given the choice of system input and output variables, their linguistic

modifiers with the associated fuzzy membership functions, an appropr)ate implication

function, ag_egation function, and defuzzification operator, if so desired, a fuzzy model

that represents the system can be specified by a set of rules, their structure, and the fuzzy

membership function parameters. Fuzzy systems model qualitative and quantitative non-

linearity of systems. Attractive features include reduced desig-n complexity, rapid

prototyping, flexibility, simplicity, cost effectiveness, and inherent parallelism. This



explainsthe popularity of fuzzy systemsin diverseapplicationareassuchas control,
prediction,evaluation,cognition,ana/ysis,andinformationmanagement.

• Neural Models: Artificial Neural Networks (ANNs) are brain-inspiredconnectionist
models that consist of many similar linear and nonlinear computationalelements
connectedin complex patterns. The simple computationalelements,also known as
neurons,whenassociatedin complexpatterns,havetheability to perform taskssuchas
memoryrecall,patternrecogxition,andlearning. Theability of neuralnetworksto learn
from repeatedexposureto systemcharacteristicshasmadethem a popular choicefor
many applications in image processing,system identification and control, pattern
recog-nitionandclassification,financialprediction,andsig-nalprocessing.Neuralmodels
can be sigmoidal networks, associativeneural networks, radial basisfunction neural
networks,or clusteringnetworks.Thechoicesaremany.

• Tree structures: A treestructureis an algorithmfor placing andlocatingobjectsin a
database.Thealgorithmfindsdataby repeatedlymakingchoicesat decisionpointscalled
nodes.A nodecanhavebranches(alsocalledchildren)whosenumbercan vary from two

to several dozens. The structure is straightforward, but in terms of the number of nodes

and children, a tree can be gigantic.

In aerospace applications, modeling is ubiquitous. Intelligent modeling tools are used for

operator behavior modeling, flight test data modeling, aerodynamic modeling for design, etc.

3.1.1 Improved Robustness using Fuzzification

One of the benefits of fuzzy lo_c modeling is the fuzzy granularization that is obtained by

defining fuzzy sets for the inputs and outputs of a system. Krishnakumar and Kulkarni (1998)

outlined an approach that combines this granularization advantage with the knowledge available

through an existing linear dynamic controller, to arrive at a powerful hybrid technique. This

technique provides an outer fuzzy shell to existing control techniques and therefore combines the

strengths of conventional as well as fuzzy control methodologies. The equivalent fuzzy dynamic

controller is shown in Figure 1. It was a/so shown via a non-linear robustness analysis, that

fuzzification of the inputs and outputs lead to better robustness to system uncertainties via the

manipulation of the distance between the membership functions.

Defuzzify
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Figure 1. Equivalent Fuzzy Dynamic Controller Architecture

4



3.2 Intelligent Systems for Search
If the solution to a task can be represented by a set of N parameters, then the job of finding this

solution can be thought of as a search in an N-dimensional space, This is referred to simply as

the search space. More generally, if the solution to a task can be represented using a

representation scheme, R, then the search space is the set of all possible configurations that may

be represented in R.

Search techniques are also employed in problems where we want to determine if we can reach

the desired goal state from an initial state, to minimize the cost in reaching the goal state, etc.

The state-space approach is one of the primary representations for such problems. The state-

space consists of an initial state and a set of operators. Application of the operators produces a

sequence of new states called the path. A goal test is defined and tested to determine when a

new state is the desired goal state.

Search techniques are routinely employed in combinatorial optimization. Some tasks involve

combining a set of entities in a specific way (e.g. the task of building a combat tactics plan). A

general combinatorial task involves deciding (a) the specifications of those entities (e.g. what

type of aircraft, the opponents aircraft descriptions, number of aircraft, etc), and (b) the way in

which those entities are brought together (e.g. various elementary tactics formations and their

relative positions). K the resulting combination of entities can in some way be given a fitness

score, then combinatorial optimization is the task of designing a set of entities, and deciding

how they must be configured, so as to give maximum fitness. Some of the popular search

techniques used by the intelligent systems community includes:

Golden Section: The most used one-dimensional search technique that guarantees an

optimum in a finite amount of time is the Golden section search technique. This

technique belongs to the interval reduction family in which the interval is reduced by

throwing out reNons that definitely do not contain the optimum.

• Breadth-first Search: Search a state space by constructing a tree consisting of a set of

leaves and branches. The algorithm defines a way to move through the tree structure.

Depth-first Search: Instead of completely searching each level of the tree before going

deeper, the algorithm follows a single branch of the tree down as many levels as possible

until a solution or a dead-end is reached.

• Heuristic Dynamic Programming (I-IDP): HDP is based on an attempt to approximate

Howard's form of the Bellman equation (Howard, 1960):

r
S(x, ) = Min]Ue_ t (x,) + yJ(x,,,)[ x,,, = f(x,,u,,noise)

where x t is the state vector, u, is the control vector, UpM(.) is the one stage Performance

Measure function, f(.,.,.) is the model of the system, and 7(0 < 7 < 1)is the discount

factor. Variations of HDP are used in solving combinatorial optimization problems.
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A'Search: This is the most famous search algorithm used by the AI community. Here

we combine the cost estimate J(n) of traversing from step n to the goal state and U(n)

which is the known path cost from the start node to step n.

Genetic Algorithms: A type of evolutionary computation devised by John Holland

(Holland, 1975). A model of machine learning that uses a genetic/evolutionary metaphor.

Implementations typically use fixed-length character strings to represent their genetic

information, together with a population of individuals which undergo crossover and

mutation in order to find interesting regions of the search space.

In aerospace applications, intelligent search techniques are used typically for searching a design

space, searching for an optimal scheduling and planning schemes, and for solving combinatorial

optimization problems. In the example presented next, we examine the use of genetic algorithms

for finding optimal tactics formation.

3.2.1 Application: Search for Optimal Air Combat Tactics

The complete design and specification of air combat tactics for many-vs.-many engagements

poses a considerable challenge to tactical planners. While solutions have been developed for one-

vs.-one or few-vs.-few encounters, the results may not generalize to larger engagements where

formation tactics become increasingly important. The most effective formation tactics employ a

basic fighting unit of two aircraft (called a section or elemenO (Shaw, 1988). Since this is how all

fighter pilots learn their craft, it would be most effective for optimized tactics not to deviate from

this established tactical doctrine. Accordingly, software tactics modules that employ basic

fighting units of two aircraft were developed. Since large numbers of fighter aircraft are difficult

to control, formation tactics for large groups may be developed using a hierarchical structure

consisting of smaller units or divisions; for example, a four-airplane division called the fluid four

consists of two elements. Each element consists of two aircraft, but they are treated as a unit.

This hierarchical concept is used to develop a GA-based approach to search for optimal air

combat tactics. Given a palette of air combat maneuvers and standard small-formation tactics as

building blocks, GAs are used to determine how they can be integrated to produce large fighting

goups that optimize overall combat effectiveness.

Tactics implementation proceeds as follows (The comptete simulation environment is presented

in Figure 2. For more details, see (Mulgund et al, 2001)):

Define a set of commonly-used element and division formations as well as the underlying
tactical maneuvers and attack tactics.

Develop a set of principles for ag_egating the small formation tactics for large MvN

engagements, and implement a method for doing so in the GA software. To illustrate,

consider a team consisting of four aircraft. Using only the fig_hting wing and double-attack,

the possible team formations are shown in Figure 3 (assuming both elements use the same

two-ship formation). A similar approach can be used to develop large division formations

from smaller 2-ship and 4-ship goupings.

Use the resultant formation tactics to drive the engagement, and evaluate the results via the

performance metric generator.
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• Search for the best MvN engagement tactics so as to optimize the performance metrics.

I

Executive Program Control ]

Scenario Tactics

Specification _, Simutation Performance GA-Based
- Mission Objectives Engagement Variables Performance Metrics Tactics

- Prayers Simulator Metric Adjustment

- Rules of Engagement Generator Logic
- Equipment

Red Players Blue Blue GA-Based

Tactics Ac ustment

Figure 2. Combat Tactics Design Environment

Fighting Wing F_gnlfng Wing I

Figure 3. Potential Four-Aircraft Formations

3.3 Intelligent Systems for Design

Aerospace systems are complex in nature and their design interdisciplinary. For example, design

optimization conducted individually on subsystems such as wing, propulsion, and automatic

control will not integrate without extensive redesim't. Even individual desig-n of these subsystems

require interaction of several subsystems. L,ltelligent systems can help in many ways to enhance

this experience. Several researchers have shown the benefits of neural networks and fuzzy log-ic

for representation of known data and desig-ner expertise. Genetic algorithms have been routinely

used for searching through large spaces with several constraints and subsystem interactions. A

generic representation of the desig-n philosophy using intelligent system features are shown in

Figure 4. In the design application presented next, Neural networks are used for representation of

data (modeling) and genetic algorithms are used to search for the type of inputs to be used for the
neural networks.



3.3.1 Application: Engine Estimator Design

One of the common objectives of aircraft engine control is to enhance engine performance under

deteriorated conditions. To ma_mize en_ne performance efficiently under degaded conditions,

a fault toler_t en_ne control scheme can be applied. The first step to implement the fault

tolerant engine control architecture is developing an engine performance estimator. This

application focuses on designing an engine performance estimator using a combination of a

genetic algorithm (GA) and a radial basis function neural network (RBFN2X;) for the

implementation.

Generally, traditional enNne performance estimators, such Kalman filter estimator, involves

intensive computational procedures because of engines' physical complexity which requires a

large number of measurements to be taken and processed. To overcome computational

complexity, model estimation using neural networks has emerged. Neural network-based model

estimation has been applied to areas such as optics, robotics, and system control. Attracted by

the advantages of neural networks, the recent studies of fault tolerance have employed neural

network architectures. In these studies, the input selection is executed by simple inspection of

data files. This manual inspection can be replaced by automatic inspection using GAs. The need

for the desig-n that involves selecting the best inputs is driven by the cost of sensors. In this case
fewer the sensors the better the cost.

IS Technologies for

Representation

i_ IS Technologies for Search I

& Optimization I

I Intelligent Designs[

Figure 4. An Intelligent Design Approach

To apply GAs to this problem, the parameter performance can be evaluated by an objective

function (performance index or PI). Regularly, a quadratic error measure is used for the

objective function. The error is defined as the difference between desired performance and the

current design's performance.
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Figure 4. GA-RBFNN Architecture

GA-RBFNEN" Architecture: The GA-RBFNN architecture is shown in Figure 5. The Genetic

Algorithms picks "n" inputs out of the possible 21 variables shown in table 1. The quantity "n" is

a user choice. For example, if n=5, the GA has the following chromosome representation

10110 10011 11011 10111 00110

Input 1 Input 2 Input3 Input4 Input 5

We use a 5 bit representation to cover the 21 possibilities. Since 5 bits give us 32 possibilities,

there will be multiple mapping for some of the variables.

The data from the first 150 seconds (300 data points with 0.5 seconds of step size) is used for the

RBFNN's traindng. For the GA fitness, all the 500 data points are utilized. This way, we

incorporate a combination of training and validation data into the GA fitness.

The RBFNN produces one output, either compressor stall margin (sin27) or thrust (fn). The

output is then compared with a desired performance of the corresponding performance measure

(desired sin27 or fn). The difference between the output from the RBFNN and the desired

performance becomes the estimation error. Squaring the error and summing it up over the time

range (500 data points) results in a fitness function of the entire system. For more details, please

see Krishnakumar and Hachisako (2000).

3.4 Intelligent Systems for Control

There are two main aspects to intelligent control: (1) the "intelligence" to analyze the changing

environment; and (2) the resources to respond to the changing environment. Intelligence

connotes the analytical ability to comprehend and react to the changing environment. Resources

connote the physical components of the system that are necessary to react to the environment. In

this work, we concentrate on the need to harvest and interpret the information from the network

of sensors and to apply it for controI such that good performance is maintained under any of the

following situations:

• Loss of control due to failure

• Aircraft characteristics change due to damage (center of gravity, inertia, etc.)



Changingoperatingconditions(altitude,mach,etc.)
Environmental effects due to wind and turbulence

Intelligent control applications focus on control problems that otherwise cannot be solved, or

cannot be solved in a satisfactory way by traditional control techniques alone. Intelligent control

as practiced today encompasses many fields from conventional control such as optimal control,

robust control, stochastic control, linear control, and nonlinear control, as well as the more recent

fuzzy, genetic, and neuro-control technologies. In the next subsection, intelligent control is

classified based on the idea of self-improvement as the goal toward higher levels of intelligence.

3.4.1 Application: Levels of Intelligent Control

In a generaI sense, an intelligent controller design can be stated as the following:

given the dynamic system as:

X(t+l) = f(X(t),U(t),t)+rl; where X are the state variables, U is the control vector,

and rl is an unknown disturbance

a set of goals generated as a function of time as

Xg(t+l) = g(Xg(t),X(t),t)

a performance measure as:

J(t+l)= 3(M(Xg(t),X(t),U(t),t)); where 3 is an operator (usually summation over T)

and a planning function as

P(t+l) = p(X(t),P(t),t,v); where v is system faults and emergencies

the intelligent controller needs to arrive at a control, U(t), such that the system (in the order of

priority)

• is locally stable (includes handling quality of the system)

• follows closely the desired path (closeness defined by the performance measure)

• constantly optimizes long-term and short-term goals

• reacts to changing environments by properly adapting the planning functionality.

Over the past decade, several innovative control architectures utilizing the intelligent control

tools have been proposed. We believe that a practical way to accommodate the above needs is to

approach the system as having various levels of capabilities for self-improvement. Self-

improvement is an important goal of human intelligence. Self-improvement is quantifiable and

measurable in various ways. By defining intelligent Control with various levels of intelligence,

the definition is left 'open ended' such that it will not become obsolete, and it will accommodate

easily the innovations that will inevitably come from the contributions of such fields as co_mlitive

science, computer hardware, sensors and actuators, learning theory, and control architectures.

J
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KrishnaKumar(1997)hasproposeda classificationschemebasedon the ability of the control
architecturefor self-improvement(seeTable 1). The classificationschemedivides thecontrol
architecturesamonglevels of intelligent control (LIC). For instance, most of the proposed

architectures can be divided among level 0, level 1, level 2, and level 3 intelligent control

schemes. Based on this classification scheme, several seemingly differing control architectures

can be looked at as achieving similar gods.

Table 1.

Level Self improvement of

0 Tracking Error (TE)

! TE + Control

Parameters (CP)

2 TE+CP+ Performance

Measure (PM)

3 TE+CP+PM+ Planning
Function

The Levels of Intelligent Control

[Description

Robust Feedback Control: Error tends to zero.

Adaptive Control: Robust feedback control with adaptive

control parameters (error tends to zero for non-nominal

operations; feedback control is self improving).

Optimal Control: Robust, adaptive feedback control that

minimizes or maximizes a utility function over time.

Planning ControI: Level 2 + the ability to plan ahead of

time for uncertain situations, simulate, and model

uncertainties.

Level 0 Intelligent Control -- A Robust Controller: Self-improvement of Tracking Error (TE)

is an important goal of many control techniques. To achieve this, one designs robust feedback

controllers with constant gains that improve the error as time goes to infinity. We consider this as

"Level 0 Intelligent Control".

Level 1 Intelligent Control -- An Adaptive Controller: Self-improvement of control

parameters towards the goal of achieving better tracking error or some error oriented goal, is the

next level in intelligent control. We consider this as "Level i intelligent Control". This level is

essentially a robust feedback controller with adaptive parameters that helps the error tend to zero

for non-nominal operations and feedback controller is self improving.

Level 2 Intelligent Control -- An Optimal Controller: Self-improvement of an estimate of the

performance error (or some measure of performance over time) towards the goal of minimization

or maximization of an utility function over time (error tends to zero and a measure of

performance is optimized) is the next level in intelligent control. We consider this as "Level 2

Intelligent Control". This level is essentially a robust feedback controller with adaptive

parameters that helps the error tend to zero for non-nominal operations, feedback controller is

self improving, and a measure of performance that is self-improving is optimized over time.

Level 3 Intelligent Control -- A Planning Controller: In addition to level 2 capabilities, Level

3 Intelligent Control includes self- improvement of planning functions. Planning functions

include contingency planning, p!anvSng for emergencies, p!,q_m_nSngfor faults, etc. These planmng

functions could be static for Level 2 but needs to be self-improving for Level 3.

Figure 6 presents the implementation of a Level 2 Intelligent Control on a C-17 test bed at

NASA Ames research center. The levels as outlined earlier are labeled in the figure. It should be

noted that Level 0 is non-adaptive whereas Level 1 is adaptive. Level 1 is non-optimal whereas

Level 2 is optimal.
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RM: Reference Models: The pilot commands roll rate and aerodynamic normal and lateral accelerations through

stick and rudder pedal inputs. These commands are then transformed into body-axis rate commands, which also

include turn coordination, level turn compensation, and yaw-dampening terms. First-order reference models are used
to filter these commands in order to shape desired handing qualities.

PI Error Controller: Errors in roll rate, pitch rate, and yaw rate responses can be caused by inaccuracies in
aerodynamic estimates and model inversion. Unidentified damage or failures can also introduce additional errors. In
order to achieve a rate-command-attitude-hold (RCAH) system, a proportional-integral (PI) error controller is used

to correct for errors detected from roll rate, pitch rate, and yaw rate (p, q, r) feedback.
NN: On-Line Leamin,o Neural Networks: The on-line learning neural networks work in conjunction with the error

controller. By recognizing patterns in the behavior of the error, the neural networks can learn to remove biases
through control augmentation commands. These commands prevent the integrators from having to windup to

remove error biases. By allowing integrators to operate at nominal levels, the neural networks enable the controlIer
to provide consistent handling qualities.

Dh Dynamic rnversion: .Dynamic inversion is based upon feedback linexization theory. No gain-scheduling is

required, since gains are functions of aerodynamic stability and control derivative estimates and sensor feedback. To
perform the model inversion, acceleration commands are used to replace the actual accelerations in the quasi-linear
model. The model is then inverted to solve for the necessary control surface commands

CA: Control Allocation: An optimal control allocation technique is used to ensure that conventional flight control
surfaces will be utilized under normal operating conditions. Unconventional flight control surface allocations are

only utilized when the primary flight control surface commands exceed the known Limits of deflection. For example,
in the longitudinal axis pitch rate control is normally provided through symmetric elevator deflections. If this

command should saturate, then the remaining portion of the command is applied to symmetric ailerons. If the
symmetric aileron command saturates, then the remaining portion of that command is applied to symmetric thrust.
The symmetric aileron command is limited, by the differential aileron command, so that secondary pitch control

does not interfere with primary roll control.

M: Pre-Trained Neural Network Model: A Levenberg-Marquardt (LM) multi-layer perceptron is used to provide
dynamic estimates for model inversion. The LM network is pre-trained with stability and control derivative data

generated by a Rapid Aircraft Modeler. This block can be replaced by other on-line derivative (parameter)
estimation techniques.

Critic 1 and 2: Adaptive Critics are utilized to optimize the control allocation scheme and to shape the reference
model dynamics in the event of a failure.

Figure 6. Level 2 I.nteUigent Night Control System
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3.5 Intelligent Systems for Training

Many characteristics of intelligent systems are readily applicable to training. Although training

entails many different areas of aerospace enNneering, our experience has been with pilot

training. Figure 7 presents an implementation of an automated hover training system. This

system was implemented in a fixed-base simulation facility and was shown to provide basic

hover training skills with no human intervention. The neural network based intelligent system

adapts the helicopter dynamics to the student pilot and automatically changes the dynamics of

the helicopter as learning progresses. For more details, please see KrishnaKumar eta] (1994)

U Y
Control tnputs _"_--_ Helicopter

t

4-I'USH

Figure 7. Automated Training Using an Intelligent System

3.6 Intelligent Systems for Autonomous Agents

An Agent is anything that can be viewed as perceiving its environment through sensors and

acting upon that environment through effectors. An autonomous agent is shown in Figure 8. A

rational agent does the right thing. How successful the agent is measured using a performance

measure that is defined using goals. It is assumed that the agent has some percepts to satisfy

observability or sensing requirements. Knowledge of the environment (Model) and actions that

can be performed (Controllability) are implicit to the agent. Some of these are pre-programmed

and some are learnt on-line. An ideal rational agent optimizes the measure of performance.

Intelligent systems are used in different capacities such as knowledge representation,

adaptability, agent-to-agent interaction, planning, and optimization. For more details on agents,

see reference (Russell and Norvig, 1995).

3. 7 Other Areas of Appfication

Intelligent systems can be embedded in almost any application where information needs to be

processed to provide a usable output. Some areas that were not specifically addressed earlier

include:

• Intelligent Systems for Decision Making

• Intelligent systems for planning and scheduling

• Intelligent systems for health management

• Intelligent systems for prediction

• Intelligent systems for knowledge discovery
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Figure 8. Intelligent Autonomous Agent Architecture (Russell and Norvig, 1995).

4 Future of Intelligent System Applications
I_ntelligent systems provide a means by which complex problems can be addressed and in many

cases solved to a satisfactory level. The benefits can be categorized as either immediate or in-the-

future. The immediate benefits are in applications of intelligent systems to areas where existing

methodoloNes are marginally satisfactory and incorporating intelligent systems provide better

efficiencies and solutions. ExampIes include: inverse design, adaptive control, optimal search,

etc. The future benefits are more exciting. Intelligent systems will help formulate and solve

problems such as brain-like control and decision-making, human-machine collaborative work,

instant speech recognition, thought control, human capability enhancement, advanced pattern

rec%maition, real-time scheduling, automated desimn, intelligent maneuvering for unmanned

aerial vehicles, and autonomous security search. On a cautious note, intelligent system

researchers should examine closely the analytical framework of their innovations. Analytical

framework along with standardization has been shown to be important for the ultimate ticket to

real implementations in aircraft applications.
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